Safety and Protection

Peter van Duijsen

HHS / Simulation Research

www.caspoc.com/news/workshops/dctrees

- Introduction
- Part I Configurations
 - DC grid architecture
 - Building Blocks
- Part II Protection and Safety
 - Short circuit protection
 - Earth connection
 - Inrush
 - Touch safety
 - Islanding
- Conclusion

Part I Configuration

- Centralized DC
- Decentralized DC
- LVDC350-400V and LVDC-48V

350-400volt – 48volt

- 350-400 volt
 - Unipolar
 - Bipolar
- 48volt
 - Unipolar
- USB-C
 - 20volt 100Watt

House – Dual Voltage

Grid manager

Part I Building blocks

- PFC- Single phase
- DCDC
 - Non-Isolated
 - Synchronous Buck
 - Isolated
 - Flyback
 - Dual Active Bridge [DAB]
- Rectifiers
- ACDC / DCAC
 - Active Front End [AFE]
 - Active Front End + Isolated DCDC

loT

Bidirectional converter Dual Active Bridge

350-400 volt р ĸ 0.5 [d] 0.5 [d] φ Φ

48 volt

Bidirectional Flyback

Flyback battery droop control

Interfacing AC and DC Bidirectional : Active Front End

Part II Short Circuit Protection

- Maximum current
- RoCoC detection

Short circuit detection

Turn-Off

Turn-Off inductive Load

• Burn energy

Turn-Off Inductive Load

Freewheeling Energy

Hybrid Circuit Breaker

Part II Earth connection

- Midpoint connected to Earth
 - 0 volt level same as Earth
- Midpoint floating
 - Current monitoring at the 0 volt level
- Midpoint controlled floating
 - Allow small deviation of 0 volt level

Grounding

Part II Inrush

- Start up of appliances
 - Inrush current limiter
 - Increase of voltage
- Plug and Play?
 - USB-C

Inrush

- Inrush protection
 - Passive
 - Active

Part II Touch Safety

- Earth leakage detection in AC systems
 - Residual current detection
 - Leakage current monitoring (IT systems)
- Earth leakage detection in DC systems
 - Residual current detection
 - Leakage current detection (IT systems)
- Earth leakage detection in Vintage AC outlet

Earth leakage

AC TT Grid

AC TI Grid DC grid Isolated

AC TI Grid DC Grid Ground M

Part II Islanding

- AC: 50Hz Synchronization is required!
- DC: No Synchronization required
- DC: Local Earth protection is required

Conclusion

- Is protection easier in DC compared to AC?
 - Short circuit detection or RoCoC?
 - Earth Leakage, RCD or Current monitoring
 - Earth leakage detection on longer cables
- AC and DC Different?
 - Inrush
 - Turn-Off inductive load
 - Earth leakage via cable leakage capacitance

www.caspoc.com/news/workshops/dctrees

