Droop Control

Peter van Duijsen HHS / Simulation Research

www.caspoc.com/news/workshops/dctrees

Contents

- Introduction, what is droop control?
- Part I Methods
- Introduction
- Configuration DC grid
- 9volt battery example
- Power Electronics
- Part II Components
 - Grid
 - Solar
 - Battery
- Part III Congestion Management
 - 9 volt Battery example
- 380 volt example
- Droop example
- Conclusion

Introduction

- What is droop control?
- Why do we need it?
- Is it easy to implement?

Configuration

- Decentralized control
- Centralized control
- Distributed control

(a) Decentralized control

(b) Centralized control

(c) Distributed control

Connecting everything just like that?

9volt battery example

• Depending on R0 and R1: battery power (V0 or V1)

Nominal voltage

 Regulate around nominal voltage

Droop control

Control via the Vgrid voltage

Without droop control

- Most power is coming from the battery,
- Nearly nothing from the PV

With droop control

- More equal power distribution
- The PV also delivers power

Droop characteristic

- Depending on Vbus:
 - we select the load current

Grid Connection

Solar and other sources

Grid and battery storage

Power Electronics

No common ground!

Grid manager

Synchronous Buck converter

Current measurement

- Current is measured as:
 - Differential voltage over a shunt resistor!
 - Shunt resistor: Series resistance of inductor!

Current is controlled!

Only current through inductor can be controlled!

Bidirectional DCDC converter

Fraunhofer Grid Manager

Bidirectional converter Dual Active Bridge

350-400 volt р ĸ 0.5 [d] 0.5 [d] φ Φ

48 volt

Bidirectional Flyback

Flyback battery droop control

Interfacing AC and DC Bidirectional : Active Front End

Connecting two DC grids

- High power 350-400volt grid
- Low power 48 volt grid

AFE & Dual Active Bridge

Droop control

Conclusion

Control

- With communication?
- Without communication
- Droop control
 - D bus voltage
 - Power Electronics
 - Congestion Management

www.caspoc.com/news/workshops/dctrees

